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Abstract We consider two classes of proximal-like algorithms for minimizing a proper
lower semicontinuous quasi-convex function f (x) subject to non-negative constraints x ≥ 0.
The algorithms are based on an entropy-like second-order homogeneous distance function.
Under the assumption that the global minimizer set is nonempty and bounded, we prove the
full convergence of the sequence generated by the algorithms, and furthermore, obtain two
important convergence results through imposing certain conditions on the proximal param-
eters. One is that the sequence generated will converge to a stationary point if the proximal
parameters are bounded and the problem is continuously differentiable, and the other is that
the sequence generated will converge to a solution of the problem if the proximal parameters
approach to zero. Numerical experiments are done for a class of quasi-convex optimization
problems where the function f (x) is a composition of a quadratic convex function from IRn

to IR and a continuously differentiable increasing function from IR to IR, and computational
results indicate that these algorithms are very promising in finding a global optimal solution
to these quasi-convex problems.

Keywords Proximal-like method · Entropy-like distance · Quasi-convex programming

Shaohua Pan work was partially supported by the Doctoral Starting-up Foundation (05300161) of
GuangDong Province.
Member of Mathematics Division, National Center for Theoretical Sciences, Taipei Office. Jein-Shan Chen
work is partially supported by National Science Council of Taiwan.

S. Pan (B)
School of Mathematical Sciences, South China University of Technology, Guangzhou 510641, China
e-mail: shhpan@scut.edu.cn

J.-S. Chen
Department of Mathematics, National Taiwan Normal University, Taipei 11677, Taiwan
e-mail: jschen@math.ntnu.edu.tw

123



556 J Glob Optim (2007) 39:555–575

1 Introduction

The proximal point algorithm for minimizing a convex function f (x) on IRn generates a
sequence {xk}k∈N ⊆ IRn by the following iterative scheme:

xk+1 = argmin
x∈IRn

{
f (x)+ λk‖x − xk‖2}, (1)

where λk is a sequence of positive numbers and ‖ · ‖ denotes the Euclidean norm in IRn . This
method, originally introduced by Martinet [15], is based on the Moreau proximal approxi-
mation of f (see [16]). The proximal point algorithm was then further developed and studied
by Rockafellar [19,20]. Later, several researchers [4,5,7,12,14,23] proposed and studied
nonquadratic proximal point algorithm by replacing the quadratic distance in (1) with a
Bregman distance or an entropy-like distance. Among others, the entropy-like distance, also
called ϕ-divergence, is defined by

dϕ(x, y) =
n∑

i=1

yiϕ(xi/yi ), (2)

where ϕ : IR → (−∞,+∞] is a closed proper strictly convex function satisfying certain
conditions; see [12,13,23,24]. This class of distance-like functions was first proposed by
Teboulle [23] in order to define entropy-like proximal maps. A popular choice of ϕ is the
case that ϕ(t) = t ln t − t + 1, for which the corresponding dϕ is exactly the well-known
Kullback–Leibler entropy function from statistics [7,8,10,23] and that is the “entropy" ter-
minology stems from.

The proximal-like algorithm based on ϕ-divergence, originally designed for minimizing
a convex function f (x) subject to non-negative constraints x ≥ 0, consists of a sequence
{xk}k∈N ⊆ IRn++ generated by the iterative scheme as follows:

x0 > 0,

xk+1 = argmin
x≥0

{ f (x)+ λkdϕ(x, xk)}. (3)

This class of proximal-like algorithms were studied extensively for convex programming;
see [12,13,23,24] and references therein, and particularly, the one with ϕ(t) = t ln t − t + 1
was recently extended to convex semidefinite programs [6] and convex second-order cone
programs in a recent manuscript of J.-S. Chen. In fact, the algorithm (3) associated with
ϕ(t) = − ln t + t − 1 was first proposed by Eggermont [8]. It is worth to point out that the
fundamental difference between (1) and (3) is that the term dϕ(·, ·) is used in (3) to force the
iterates {xk}k∈N to stay in IRn++ which is the interior of the non-negative orthant, namely the
algorithm (3) will automatically generate a positive sequence {xk}k∈N ⊆ IRn++.

In this paper, we will focus on two classes of proximal-like algorithms of the form (3) but
with a second-order homogeneous distance-like function dφ given by

dφ(x, y) =
n∑

i=1

y2
i φ(xi/yi ), (4)

where the kernel φ is defined with two types of special ϕ and a quadratic function. The
definition of φ and the properties of dφ are given in Sect. 3. This class of algorithms has been
studied for convex minimization (see [1,2,22]). However, we in this paper employ these
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algorithms to solve the following quasi-convex minimization problem:

min f (x)
s.t. x ≥ 0,

(5)

where f : IRn → IR is a proper lower semicontinuous quasi-convex function. Since we do
not require the convexity of f , the basic iterative scheme for the algorithms is as follows:

x0 > 0,

xk+1 ∈ argmin
x≥0

{ f (x)+ λkdφ(x, xk)}, (6)

where λk is same as before. The purpose of this paper is to establish the full convergence of
the sequence {xk}k∈N generated by (6) under some mild assumptions for the quasi-convex
problem (5), and verify the effectiveness of the algorithms by numerical experiments.

Note that (5) is a special nonconvex optimization problem, and therefore the global opti-
mization methods [11] developed for the general nonconvex optimization problem can be
applied for solving it. Nevertheless, we should point out that the design of these global
optimization methods is often far more complex than that of the proximal-like method (6).

The rest of this paper is organized as follows. In Sect. 2, we recall some definitions and
basic results that will be used in the later sections. In Sect. 3, we present the definition of the
kernel φ and investigate the properties of dφ . Based on the entropy-like second-order homo-
geneous distance function dφ , we in Sect. 4 propose two classes of proximal-like algorithms,
and prove the full convergence of the sequence generated. In Sect. 5, numerical experi-
ments were done with a specific dφ for a class of continuously differentiable quasi-convex
programming problems.

Unless otherwise stated, in this paper, we use the notation 〈·, ·〉 and ‖ · ‖ to denote the
Euclidean inner product and Euclidean norm in IRn , and IRn+ to represent the non-negative
orthant in IRn with the interior IRn++. For a given differentiable function f : IRn → IR, ∇ f (x)
denotes the gradient of f at x , while (∇ f (x))i means the i th partial derivative of f with
respect to x . In addition, we use ∇1dφ(x, y) to denote the partial derivative of dφ with respect
to its first component.

2 Basic concepts

In this section, we recall some definitions and basic results which will be used in the subse-
quent analysis. We start with the definition of Fejér convergence for a sequence.

Definition 2.1 A sequence {yk}k∈N is Fejér convergent to a nonempty set U ⊆ IRn with
respect to a distance-like function d(·, ·), if for every u ∈ U , we have d(u, yk+1) ≤ d(u, yk).
When d is the Euclidean distance, {yk} is called Fejér convergent to U .

Given an extended real-valued function f : IRn → IR ∪ {+∞}, denote its domain by

dom f := {x ∈ IRn : f (x) < +∞}
and its epigraph by

epi f :=
{
(x, β) ∈ IRn × IR : f (x) ≤ β

}
.

Then, f is said to be proper if dom f �= ∅ and f (x) > −∞ for any x ∈ dom f , and f is
a lower semicontinuous function if epi f is a closed subset of IRn × IR. We next recall the
definition of the Fréchet subdifferential; see [18, Chapter 8] and [21, Chapter10].
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Definition 2.2 Let f : IRn → IR ∪ {+∞} be a proper lower semicontinuous function. For
each x ∈ dom f , the Fréchet subdifferential of f at x , denoted by ∂̂ f (x), is the set of vectors
s ∈ IRn such that

lim inf
y �=x,y→x

1

‖y − x‖
[

f (y)− f (x)− 〈s, y − x〉
]

≥ 0. (7)

If x /∈ dom f , then ∂̂ f (x) = ∅.

The vector s satisfying the inequality (7) is also termed as a regular subgradient of f at x
(see [21, p. 301]). It is not difficult to see that the inequality (7) is equivalent to

f (y) ≥ f (x)+ 〈s, y − x〉 + o(‖y − x‖),
where

lim
y→x

o(‖y − x‖)/‖y − x‖ = 0.

For the subdifferential ∂̂ f (x), the following results hold by direct verifications.

Lemma 2.3 [21, Chapter 8] Let f : IRn → IR ∪ {+∞} be a proper lower semicontinuous
function and ∂̂ f (x) be the subdifferential of f at x. Then,

(a) ∂̂ f (x) is a closed and convex set.
(b) If f is differentiable at x or in a neighborhood of x, then ∂̂ f (x) = {∇ f (x)}, where

∇ f (x) is the gradient of f .
(c) If g = f + h with f finite at x and h differentiable on a neighborhood of x, then

∂̂g(x) = ∂̂ f (x)+ ∇h(x).
(d) If f has a local minimum at x̄ , then 0 ∈ ∂̂ f (x̄).

To work with differentiable minimization problems, we also need the following definition.

Definition 2.4 Suppose that f : IRn → IR is a differentiable function. Then,

(a) For an unconstrained optimization problem of minimizing f (x) over x ∈ IRn , x∗ is
called a stationary point if ∇ f (x∗) = 0.

(b) For a constrained optimization problem of minimizing f (x) over x ∈ C where C is
nonempty and convex subset of IRn , x∗ is called a stationary point if

∇ f (x∗)T (x − x∗) ≥ 0 for all x ∈ C.

To close this section, we recall the concept of quasi-convexity, strict quasi-convexity and
strong quasi-convexity, and briefly discuss general properties of the minimization problem
involving the objective function with such properties.

Definition 2.5 Let f : IRn → IR be a proper function. Then, f is called quasi-convex if for
all x, y ∈ dom f and β ∈ (0, 1), there always holds

f (βx + (1 − β)y) ≤ max{ f (x), f (y)}.
It can be proved that any convex function is also quasi-convex, but the converse is not true.
For a quasi-convex function, we have the following important property.

Proposition 2.6 The proper function f : IRn → IR is quasi-convex if and only if the level
sets L f (α) := {x ∈ dom f | f (x) ≤ α} are convex for every α ∈ IR.
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Definition 2.7 Let f : IRn → IR be a proper function. Then, f is called strictly quasi-convex
if for all x, y ∈ dom f with f (x) �= f (y), there always holds

f (βx + (1 − β)y) < max{ f (x), f (y)} for ∀β ∈ (0, 1).

By [3, Lemma 3.5.7], if f is lower semicontinuous and strictly quasi-convex, then f is quasi-
convex. For a strictly quasi-convex function, we have the following important result, which
implies that every local optimal solution of (5) is also a global optimal solution.

Proposition 2.8 [3, Theorem 3.5.6] Let f : IRn → IR be a proper strictly quasi-convex
function. Consider the problem to minimize f (x) subject to x ∈ C, where C is a nonempty
convex set in IRn. If x̄ is a local optimal solution, then x̄ is also a global optimal solution.

Definition 2.9 Let f : IRn → IR be a proper function. Then, f is called strongly quasi-convex
if for all x, y ∈ dom f with x �= y, there always holds

f (βx + (1 − β)y) < max{ f (x), f (y)} for ∀β ∈ (0, 1).

It can be shown that every strongly quasi-convex function is strictly quasi-convex, and every
strongly quasi-convex function is quasi-convex even without semicontinuity assumption.
When f (x) is strongly quasi-convex, the problem (5) has the unique global optimal solution.

3 Distance-like function dφ and its properties

In this section, we present the definition of the kernel φ and investigate the properties of
the bivariate function dφ induced by φ via formula (4). We start with the assumptions on
the function ϕ, needed to define the kernel φ. Let ϕ: IR → (−∞,+∞] be a closed proper
convex function with domϕ �= ∅ and domϕ ⊆ [0,+∞). We assume that

(i) ϕ is twice continuously differentiable on int(domϕ) = (0,+∞);
(ii) ϕ is strictly convex on its domain;

(iii) limt→0+ ϕ′(t) = −∞;
(iv) ϕ(1) = ϕ′(1) = 0 and ϕ′′(1) > 0.

In the rest of this paper, we denote by � the class of functions satisfying (1)–(4).
Given ϕ ∈ �, we define the following two subclasses of �:

�1 =
{
ϕ ∈ � : ϕ′′(1)(1 − 1/t) ≤ ϕ′(t) ≤ ϕ′′(1) ln t, ∀t > 0

}
(8)

and

�2 =
{
ϕ ∈ � : ϕ′′(1)(1 − 1/t) ≤ ϕ′(t) ≤ ϕ′′(1)(t − 1), ∀t > 0

}
. (9)

Since ln t ≤ t − 1 for any t > 0 and ϕ′′(1) > 0, clearly,�1 ⊆ �2 ⊆ �. The assumptions on
�1 and �2 are very mild. It is not hard to verify that the following functions

ϕ1(t) = t ln t − t + 1, dom ϕ = [0,+∞),

ϕ2(t) = − ln t + t − 1, dom ϕ = (0,+∞),

ϕ3(t) = (
√

t − 1)2, dom ϕ = [0,+∞)

are all in �1, and consequently belong to �2. The first example ϕ1 plays an important
role in the convergence analysis of our first class of algorithms that will be studied in the

123



560 J Glob Optim (2007) 39:555–575

next section. As mentioned in the introduction, the ϕ-divergence for ϕ = ϕ1 is exactly the
Kullback–Leibler entropy function, given by

H(x, y) := dϕ(x, y) =
n∑

j=1

x j ln(x j/y j )+ y j − x j , (10)

whose domain can be continuously extended to IRn+ × IRn++ by using the convention that
0 ln 0 = 0. The following lemma states some useful properties of H(x, y), and since their
proofs are elementary by use of (10), we here omit them.

Lemma 3.1 Let H(·, ·) be defined as in (10). Then, we have the following results.

(a) The level sets of H(x, ·) are bounded for all x ∈ IRn+.
(b) If {yk} ⊂ IRn++ converges to y ∈ IRn+, then limk→+∞ H(y, yk) = 0.
(c) If {zk} ⊂ IRn+, {yk} ⊂ IRn++ are sequences such that {zk} is bounded, limk→+∞ yk = y

and limk→+∞ H(zk, yk) = 0, then limk→+∞ zk = y.

With the above assumptions on ϕ, we now give the definition of the kernel φ involved in
the function dφ . Given ϕ ∈ � and the parametersµ > 0 and ν ≥ 0, let φ : IR → (−∞,+∞]
be a closed proper convex function defined by

φ(t) := µϕ(t)+ ν

2
(t − 1)2. (11)

It is not difficult to verify that φ satisfies the properties listed in (i)–(iv), and consequently
φ ∈ �. Particularly, φ will be strongly convex on its domain if ν > 0. This implies that the
objective function of the subproblem (6), i.e., f (x)+ λ

∑n
i=1(x

k
i )

2φ(xi/xk
i ) will be strictly

convex on IRn++ if the parameter λ is set to be sufficiently large, although f (x) itself is
quasi-convex. That is to say, the proximal term dφ(·, ·) plays a convexification role in the
quasi-convex subproblem (6), and moreover, the convexification role becomes stronger as
the parameter λ increases. In fact, from the computational results in Sect. 5, we may see that
the proximal term shows a good convexification role for the quasi-convex function f (x),
even for a very small λ.

In what follows, we will concentrate on the properties of the bivariate function dφ .

Lemma 3.2 Given a ϕ ∈ � and the parameters µ > 0, ν ≥ 0, and let φ be the kernel
defined by (11) and dφ(·, ·) be the function induced by φ via formula (4). Then,

(a) dφ is a homogeneous function of order 2, i.e., dφ(αx, αy) = α2dφ(x, y) for ∀α > 0.
(b) For a fixed y ∈ IRn++, the function dφ(·, y) is strictly convex over IRn++. If, in addition,

ν > 0, then dφ(·, y) is strongly convex on IRn++.
(c) For any (x, y) ∈ IRn++ × IRn++, dφ(x, y) ≥ 0, and dφ(x, y) = 0 if and only if x = y.
(d) For any fixed z ∈ IRn++, the level sets L(z, γ ) := {x ∈ IRn++ : dφ(x, z) ≤ γ } are

bounded for all γ ≥ 0.
(e) Ifϕ ∈ �1 or�2, and {yk}k∈N ⊆ IRn++ converges to ȳ ∈ IRn+, then for any fixed x ∈ IRn++,

the sequence {dφ(x, yk)}k∈N is bounded.

Proof The properties in (a) and (b) are clear from the definition of dφ given by (4).
(c) Note that φ(t) is strictly convex and moreover φ′(1) = µϕ′(1) = 0 due to (iv). Hence,

φ(t) ≥ φ(1) = 0 and φ(t) = 0 iff t = 1.

This implies that dφ(x, y) ≥ 0 for ∀(x, y) ∈ IRn++ × IRn++, and dφ(x, y) = 0 iff x = y.
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(d) To prove the result, it is enough to consider the one-dimensional case, i.e., to show that
hζ (t) := ζ 2φ(t/ζ ) for ζ > 0 has bounded level sets, which in turn is equivalent to showing
that φ has bounded level sets. Note that {t : φ(t) ≤ 0} = {1}. Therefore, the conclusion
follows from [18, Corrollary 8.7.1].
(e) From the definitions of φ and dφ , we have that

dφ(x, yk) =
n∑

i=1

⎡

⎣µ(yk
i )

2ϕ

(
xi

yk
i

)

+ ν

2
(yk

i )
2

(
xi

yk
i

− 1

)2
⎤

⎦

=
n∑

i=1

[
µ(yk

i )
2ϕ(xi/yk

i )+ ν

2
(xi − yk

i )
2
]
.

If ϕ(t) is bounded above for any t > 0, then the conclusion is obvious. Otherwise, we discuss
the following two cases:
Case (1) ȳi > 0 for each i ∈ {1, 2, . . . , n}. Since {yk

i }k∈N → ȳi for each i , the proof follows
directly from the continuity of ϕ.
Case (2) there exists an index i0 ∈ {1, 2, . . . , n} such that ȳi0 = 0. By the given assumptions
and Case (1), it suffices to prove that the sequence {(yk

i0
)2ϕ(xi/yk

i0
)} is bounded above. For

any k ∈ N , using the convexity of ϕ and the fact that ϕ(1) = 0, we have that

0 ≥ ϕ(xi/yk
i0
)+ ϕ′(xi/yk

i0
)
(

1 − xi/yk
i0

)
.

Multiplying the inequality with (yk
i0
)2 readily yields that

(yk
i0
)2ϕ(xi/yk

i0
) ≤ (yk

i0
)2ϕ′(xi/yk

i0
)
(

xi/yk
i0

− 1
)

= (yk
i0
)ϕ′(xi/yk

i0
)
(

xi − yk
i0

)
,

which in turn implies that

(yk
i0
)2ϕ(xi/yk

i0
) ≤

∣
∣
∣(yk

i0
)ϕ′(xi/yk

i0
)(xi − yk

i0
)

∣
∣
∣.

If ϕ ∈ �2, then it follows from (9) that

ϕ′′(1)yk
i0
(1 − yk

i0
/xi ) ≤ yk

i0
ϕ′(xi/yk

i0
) ≤ ϕ′′(1)(xi − yk

i0
).

Combining the last two inequalities immediately gives that

(yk
i0
)2ϕ(xi/yk

i0
) ≤ max

{

ϕ′′(1)
(

xi − yk
i0

)2
, ϕ′′(1)

yk
i0

xi

(
xi − yk

i0

)2
}

.

This together with the given assumptions shows that {(yk
i0
)2ϕ(xi/yk

i0
)} is bounded above

for any ϕ ∈ �2, and consequently the sequence {dφ(x, yk)}k∈N is bounded. Noting that
�1 ⊆ �2, the sequence {dφ(x, yk)}k∈N is also bounded for ϕ ∈ �1. �

Lemma 3.2 (a)–(c) state that dφ defined by (4) is a convex second-order homogeneous
distance-like function. Thus, in analogy with the Euclidean distance, we can define the pro-
jection of a point y, denoted by x̂(y), to a closed convex set S ⊆ IRn with respect to dφ ,
which is characterized as the solution of the following problem

inf
{

dφ(x, y) : x ∈ S
}
. (12)

The existence of x̂(y) is guaranteed by Lemma 3.2 (d). For this projection, we have the
following similar results to the Euclidean projection.
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Lemma 3.3 Let S be a closed convex subset of IRn and y ∈ IRn be a point not in S. Then
x̂(y) is the projection of y on S with respect to dφ if and only if

〈
x − x̂(y), −∇1dφ(x̂(y), y)

〉
≤ 0, ∀x ∈ S. (13)

Proof Note that problem (12) is equivalent to inf{dφ(x, y) + δ(x | S) : x ∈ IRn}, where
δ(· | S) denotes the indicator function of the set S. By [19, Theorem 27.4], x̂(y) solves the
unconstrained optimization problem if and only if the inequality (13) holds. Thus, the proof
is completed. �

Finally, we present a favorable property of dφ with ϕ ∈ �1 or �2, which will play a
crucial role in the convergence analysis of algorithms to be studied in the next section.

Lemma 3.4 Given a ϕ ∈ � and the parameters µ > 0, ν ≥ 0, and let φ be the kernel
defined as in (11). Then, for any a, b ∈ IRn++ and c ∈ IRn+, we have the following results:

(a) If ν = 0 and ϕ ∈ �1, then 〈c − b,∇1dφ(b, a)〉 ≤ µϕ′′(1)max1≤ j≤n{a j }[H(c, a) −
H(c, b)].

(b) If ν ≥ µϕ′′(1) > 0 and ϕ ∈ �2, then 〈c − b,∇1dφ(b, a)〉 ≤ θ(‖c − a‖2 − ‖c − b‖2)

with θ = (ν + µϕ′′(1))/2.

Proof (a) Since ϕ ∈ �1, we have from (8) that

ϕ′(t) ≤ ϕ′′(1) ln t for any t > 0.

Setting t = b j/a j in the inequality, we then obtain that

c j a jϕ
′(b j/a j ) ≤ c j a jϕ

′′(1) ln(b j/a j ), j = 1, 2, . . . , n. (14)

On the other hand, it follows from (8) that

−ϕ′(t) ≤ −ϕ′′(1)(1 − 1/t), ∀t > 0.

Substituting t = b j/a j into the inequality and multiplying with a j gives

− b j a jϕ
′(b j/a j ) ≤ a jϕ

′′(1)(a j − b j ), j = 1, 2, . . . , n. (15)

Define

 ′(a, b) := (a1ϕ
′(b1/a1), . . . , anϕ

′(bn/an))
T , ∀a, b ∈ IRn++.

Then, adding the inequalities (14) and (15) and summing over j = 1, . . . , n gives

〈
c − b,  ′(a, b)

〉
≤ ϕ′′(1)

⎡

⎣
n∑

j=1

a j

(
c j ln(b j/a j )+ a j − b j

)
⎤

⎦

≤ ϕ′′(1) max
1≤ j≤n

{a j }
⎡

⎣
n∑

j=1

c j ln(b j/a j )+ a j − b j

⎤

⎦

= ϕ′′(1) max
1≤ j≤n

{a j } [H(c, a)− H(c, b)] .

Note that ∇1dφ(b, a) = µ ′(a, b), and hence we obtain the result from the last inequality.
(b) The proof is similar to [2, Lemma 3.4]. For completeness, we here include it. Since
ϕ ∈ �2, the inequality (15) still holds. On the other hand, we have from (9) that

ϕ′(t) ≤ ϕ′′(1)(t − 1), ∀t > 0.
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Substituting t = b j/a j into the above inequality leads to

c j a jϕ
′(b j/a j ) ≤ c j a jϕ

′′(1)(b j/a j − 1) = ϕ′′(1)c j (b j − a j ), j = 1, 2, . . . , n. (16)

Adding the two inequalities (15) and (16), summing over j = 1, 2, . . . , n, and using the
definition of  ′(a, b), we obtain

〈c − b,  ′(a, b)〉 ≤ ϕ′′(1)
n∑

j=1

[
c j (b j − a j )+ a j (a j − b j )

]
= ϕ′′(1)〈c − a, b − a〉.

Note that ∇1dφ(b, a) = µ ′(a, b)+ ν(b − a). Then, the last inequality implies that

〈c − b,∇1dφ(a, b)〉 ≤ µϕ′′(1)〈c − a, b − a〉 + ν〈c − b, b − a〉. (17)

Using the identities

〈c − a, b − a〉 = (1/2)(‖c − a‖2 − ‖c − b‖2 + ‖b − a‖2)

and

〈c − b, b − a〉 = (1/2)(‖c − a‖2 − ‖c − b‖2 − ‖b − a‖2)

we then from (17) obtain

〈c − b,∇1dφ(b, a)〉 ≤ θ(‖c − a‖2 − ‖c − b‖2)− 1

2
(ν − µϕ′′(1))‖b − a‖2

≤ θ(‖c − a‖2 − ‖c − b‖2),

where the second inequality is due to ν ≥ µϕ′′(1). Thus, the proof is completed. �

4 Interior proximal-like methods

In this section, we consider two classes of proximal-like algorithms based on the second-order
homogeneous function dφ for the quasi-convex optimization problem (5). The two kinds of
algorithms are described as follows, where the RIPM was first proposed by Auslender et al.
[2] for convex minimization problems subject to non-negative constraints.
Interior Proximal Method (IPM) Let φ be defined as in (11) with µ > 0, ν = 0 and
ϕ ∈ �1. Generate the sequence {xk}k∈N by the iterative scheme (6).
Regularized Interior Proximal Method (RIPM) Let φ be defined as in (11) with ν ≥
µϕ′′(1) > 0 and ϕ ∈ �2. Generate the sequence {xk}k∈N by the iterative scheme (6).

To establish the convergence of IPM and RIPM, throughout this section, we make the
following assumptions for the quasi-convex optimization problem (5):

(A1) dom f ∩ IRn++ �= ∅.
(A2) The optimal set of problem (5), denoted by X ∗, is nonempty and bounded.

In what follows, we concentrate on the convergence of IPM and RIPM. We first prove
that they are well-defined, which is a direct consequence of the following lemma.

Lemma 4.1 Given µ > 0, ν ≥ 0 and ϕ ∈ �, and let φ and dφ be defined as in (11) and
(4), respectively. Then, under assumptions (A1) and (A2), the sequence {xk}k∈N generated
by the iterative scheme (6) is well defined.
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Proof The proof proceeds by induction. Clearly, when k = 0, the conclusion holds due to
(6). Assume that xk is well defined. Let f ∗ be the optimal value of problem (5), then

f (x)+ λkdφ(x, xk) ≥ f ∗ + λkdφ(x, xk) for all x ∈ IRn++. (18)

Let Fk(x) := f (x)+ λkdφ(x, xk) and denote its level sets by

L Fk (γ ) := {x ∈ IRn++ : Fk(x) ≤ γ } for all γ ∈ IR.

Then, the inequality in (18) implies that L Fk (γ ) ⊆ L(xk, λ−1
k (γ − f ∗)). By Lemma 3.2 (c),

the level sets L(xk, λ−1
k (γ − f ∗)) are bounded for any γ ≥ f ∗, and consequently, the sets

L Fk (γ ) are bounded for any γ ≥ f ∗. Whereas for any γ ≤ f ∗, we have L Fk (γ ) ⊆ X ∗,
which are obviously bounded due to assumption (A2). The two sides show that the level sets
of the function Fk(x) are bounded. Also, Fk(x) is lower semicontinuous on dom f . Hence,
the level sets of Fk(x) are compact. Now, using the lower semicontinuity of Fk(x) and the
compactness of its level sets, we have that Fk(x) has a global minimum which may not be
unique due to the nonconvexity of f . In such case, xk+1 can be arbitrarily chosen among the
set of minimizers of Fk(x). �

Next, we investigate the properties of the sequence {xk}k∈N generated by IPM and RIPM.
To this end, we define the following set

U :=
{

x ∈ IRn+ | f (x) ≤ inf
k∈N

f (xk)
}
.

From assumptions (A1)–(A2) and Proposition 2.6, U is a nonempty closed convex set.

Lemma 4.2 Let {λk}k∈N be an arbitrary sequence of positive numbers and {xk}k∈N be the
sequence generated by IPM. Then, under assumptions (A1)–(A2),

(a) { f (xk)}k∈N is a decreasing and convergent sequence.
(b) {xk}k∈N is Fejér convergent to the set U with respect to H.
(c) For all x ∈ U, the sequence {H(x, xk)}k∈N is convergent.

Proof (a) From Eq. 6, xk+1 is a global optimal solution of the following problem:

min
x≥0

{
f (x)+ λkdφ(x, xk)

}

and consequently, for any x ∈ IRn+, it follows that

f (xk+1)+ λkdφ(x
k+1, xk) ≤ f (x)+ λkdφ(x, xk). (19)

Setting x = xk in (19), we then obtain that

f (xk+1)+ λkdφ(x
k+1, xk) ≤ f (xk)+ λkdφ(x

k, xk) = f (xk),

which means that

0 ≤ λkdφ(x
k+1, xk) ≤ f (xk)− f (xk+1).

Hence, { f (xk)}k∈N is decreasing, and furthermore, convergent due to assumption (A2).
(b) From inequality (19), it follows that for any x ∈ U ,

dφ(x
k+1, xk) ≤ dφ(x, xk).
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This implies that xk+1 is the unique projection of xk on U with respect to dφ . Therefore, by
Lemma 3.3, we have that

〈
x − xk+1, −∇1dφ(x

k+1, xk)
〉
≤ 0, ∀x ∈ U. (20)

On the other hand, applying Lemma 3.4 (a) at the points c = x, a = xk , and b = xk+1, we
then obtain that

H(x, xk)− H(x, xk+1) ≥ 〈x − xk+1, ∇1dφ(xk+1, xk)〉
µϕ′′(1)max1 ≤ j ≤ n{xk

j }
. (21)

Since µϕ′′(1)max1 ≤ j ≤ n{xk
j } > 0, using the inequalities (20) and (21) yields that

H(x, xk) ≥ H(x, xk+1), ∀x ∈ U.

From Definition 2.1, it follows that {xk}k∈N is Fejér convergent to U with respect to H .
(c) The proof follows from part (b) and the non-negativity of H . �

Lemma 4.3 Let {λk}k∈N be an arbitrary sequence of positive numbers and {xk}k∈N be the
sequence generated by RIPM. Then, under assumptions (A1) and (A2),

(a) { f (xk)}k∈N is a decreasing and convergent sequence.
(b) {xk}k∈N is Fejér convergent to the set U.
(c) For all x ∈ U, the sequence {‖x − xk‖}k∈N is convergent.

Proof
(a) The proof is similar to that of Lemma 4.2 (a), and we here omit it.
(b) By a similar argument to Lemma 4.2 (b), we can obtain the inequality (20). On the other
hand, applying Lemma 3.4 (b) at the points c = x, a = xk , and b = xk+1 gives

〈x − xk, ∇1dφ(x
k, xk+1)〉 ≤ θ(‖x − xk‖2 − ‖x − xk+1‖2), (22)

where θ = (ν + µϕ′′(1))/2. Since θ > 0, using the inequalities (20) and (22) yields that

‖x − xk+1‖2 ≤ ‖x − xk‖2, ∀x ∈ U. (23)

By Definition 2.1, we thus prove that {xk}k∈N is Fejér convergent to the set U .
(c) The proof follows from part (b) and the non-negativity of ‖x − xk‖. �

To now, we have proved that the sequence {xk}k∈N generated by IPM or RIPM is well-
defined and satisfies some favorable properties. With these properties, we next establish the
convergence results of the proposed algorithms.

Proposition 4.4 Suppose that assumptions (A1) and (A2) are satisfied. Let {λk}k∈N be an
arbitrary sequence of positive numbers and {xk}k∈N be the sequence generated by IPM.
Then, the sequence {xk}k∈N converges, and furthermore,

(a) if there exist λ and λ̄ such that 0 < λ < λk ≤ λ̄ for any k, then

lim inf
k→+∞ gk

i ≥ 0, lim
k→+∞ gk

i xk
i = 0, ∀i = 1, 2, . . . , n, (24)

where gk ∈ ∂̂ f (xk) and gk
i is the i th component of gk .

(b) If limk→+∞ λk = 0, then {xk}k∈N converges to a solution of the problem (5).
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Proof We first prove that the sequence {xk}k∈N converges. By Lemma 4.2 (b), {xk}k∈N is
Fejér convergent to the set U with respect to H , which implies that

{xk}k∈N ⊆
{

y ∈ IRn++ | H(x, y) ≤ H(x, x0)
}

for ∀x ∈ U.

As a consequence, {xk}k∈N is bounded by Lemma 3.1 (a). Thus, there exist an x̄ and a
subsequence {xk j } of {xk}k∈N converging to x̄ . From the lower semicontinuity of f ,

lim
j→+∞ f (xk j ) ≥ f (x̄),

which, together with Lemma 4.2 (a), implies that

f (x̄) ≤ f (xk), ∀k ∈ N .

This shows that x̄ ∈ U . By Lemma 4.2 (c), the sequence {H(x̄, xk)}k∈N is then convergent.
In addition, from Lemma 3.1 (b), we have limk→+∞ H(x̄, xk j ) = 0. From all the above, we
conclude that {H(x̄, xk)}k∈N is a convergent sequence with a subsequence converging to 0,
and consequently it must converge to 0 itself, i.e., limk→+∞ H(x̄, xk) = 0. Using Lemma
3.1 (c) with zk = xk and yk = x̄ , we thus prove that {xk}k∈N converges to x̄ .
(a) From the iterative formula (6) and Lemma 2.3 (d), we have that

0 ∈ ∂̂
(

f (x)+ λkdφ(x, xk)
)
(xk+1).

Therefore, by Lemma 2.3 (c), there exists gk+1 ∈ ∂̂ f (xk+1) such that

λk∇1dφ(x
k+1, xk) = −gk+1,

i.e.,

µλk xk
i ϕ

′
(

xk+1
i

xk
i

)

= −gk+1
i , i = 1, 2, . . . , n. (25)

Define the index sets

I (x̄) :=
{

i ∈ {1, 2, . . . , n} | x̄i > 0
}

and J (x̄) :=
{

i ∈ {1, 2, . . . , n} | x̄i = 0
}
.

We next argue the conclusion by the two cases i ∈ I (x̄) and i ∈ J (x̄).
Case (1) i ∈ I (x̄). In this case, limk→+∞ xk+1

i /xk
i = 1 since {xk}k∈N converges to x̄ . Using

the continuity of ϕ′ and ϕ′(1) = 0 and recalling that 0 < λ ≤ λk ≤ λ̄ for all k, we then
obtain from (25) that

lim
k→+∞ gk+1

i = 0, ∀i ∈ I (x̄). (26)

Case (2) i ∈ J (x̄). For every i ∈ J (x̄), we define the following two index sets:

J i+ =
{

k : xk+1
i /xk

i > 1
}

and J i− =
{

k : xk+1
i /xk

i ≤ 1
}
.

Since ϕ′(1) = 0 and ϕ′ is monotone increasing on its domain, we have from (25) that

gk+1
i ≤ 0 for ∀k ∈ J i+, ∀i ∈ J (x̄).

On the other hand, using (25) and the fact that ϕ ∈ �1 ⊆ �2 yields that

gk+1
i ≥ −µϕ′′(1)λk xk

i

(
xk+1

i

xk
i

− 1

)

≥ −µϕ′′(1)λ̄(xk+1
i − xk

i ), ∀k ∈ J i+.
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Noting that limk→+∞(xk+1
i − xk

i ) = 0, the last two equations imply that

lim
k→+∞, k∈J i+

gk+1
i = 0, ∀i ∈ J (x̄). (27)

Furthermore, since ϕ′(t) ≤ 0 for any 0 < t ≤ 1 by (ii) and (iv), we have from (25) that

gk+1
i ≥ 0, ∀k ∈ J i−, ∀i ∈ J (x̄). (28)

The inequalities (26)–(28) immediately imply the first part of (24), i.e.,

lim inf
k→+∞ gk

i ≥ 0, ∀i = 1, 2, . . . , n.

Next, let us prove the second part of (24). Using (26) and (27) and the fact that {xk}k∈N

converges to x̄ , we have only to prove that

lim
k→+∞, k∈J i−

gk+1
i xk+1

i = 0, ∀i ∈ J (x̄).

Considering that

lim
k→+∞, k∈J i−

xk+1
i = 0, ∀i ∈ J (x̄)

and using the first part of (24), we then have only to prove that the subsequence {gk
i }k∈J i− for

each i ∈ J (x̄) is bounded above. Take ε0 > 0 and x ∈ IRn++ ∩ dom f with xi > ε0 for any
i . Then for k ∈ J i− sufficiently large, we have

xi − xk+1
i ≥ ε0

2
, ∀i ∈ J (x̄). (29)

From Definition 2.2, we have

f (x) ≥ f (xk+1)+
n∑

i=1

gk+1
i (x − xk+1

i )+ o(‖x − xk+1‖), (30)

which implies that the subsequence {gk
i }k∈J i− is bounded above for i ∈ J (x̄). Indeed, sup-

pose the contrary. Then there would exist an i0 ∈ J (x̄) and a subsequence {gkl
i0

}kl∈J i− (with
liml→+∞ kl = +∞) such that

lim
l→+∞ gkl+1

i0
= +∞, gkl+1

i0
≥ 0.

Since the sequence {xk}k∈N is convergent, using the Eq. 27–29 gives that there exists η ∈ IR
such that for sufficiently large l,

∑

i �=i0

gkl+1
i (xi − xkl+1

i )+ o(‖x − xk+1‖) ≥ η.

Then, from (29) and (30), we obtain

f (x) ≥ f (xkl+1)+ ε0

2
gkl+1

i0
+ η.

Since liml→+∞ f (xkl+1) ≥ f (x̄) and liml→+∞ gkl+1
i0

= +∞, passing to the limit in the
above inequality leads to a contradiction.
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(b) From the inequality in (19) and the non-negativity of dφ , it follows that

f (xk+1) ≤ f (x)+ λkdφ(x, xk), ∀x ∈ IRn++.

Taking the limit k → +∞ into the inequality and using limk→+∞ λk = 0, Lemma 3.2 (e)
and the lower semicontinuity of f , we then obtain that

f (x̄) ≤ f (x), ∀x ∈ IRn++, (31)

where x̄ is such that limk→+∞ xk = x̄ . This implies that x̄ ∈ X ∗. �

Proposition 4.5 Suppose that assumptions (A1) and (A2) are satisfied. Let {λk}k∈N be an
arbitrary sequence of positive numbers and {xk}k∈N be the sequence generated by RIPM.
Then, the sequence {xk}k∈N converges, and furthermore,

(a) If there exist λ and λ̄ such that 0 < λ < λk ≤ λ̄ for any k, we have

lim inf
k→+∞ gk

i ≥ 0, lim
k→+∞ gk

i xk
i = 0, ∀i = 1, 2, . . . , n, (32)

where gk
i is same as Proposition 4.4.

(b) If limk→+∞ λk = 0, then the sequence {xk}k∈N converges to a solution of problem (5).

Proof First, we prove that the sequence {xk}k∈N converges. By Lemma 4.3 (b), {xk}k∈N

is Fejér convergent to the set U , which implies that

{xk}k∈N ⊆ {
y ∈ IRn | ‖x − y‖ ≤ ‖x − x0‖} for ∀x ∈ U.

Note that the latter set is bounded for any given x ∈ IRn , and therefore, the sequence {xk}k∈N

is bounded and there exist an x̂ and a subsequence {xk j } of {xk}k∈N converging to x̂ . Using
a similar argument to the first part of Proposition 4.4, we can prove that x̂ ∈ U . Thus, by
Lemma 4.3 (c), the sequence {‖xk − x̂‖}k∈N is convergent. Since {xk j } ∈ IRn++ converges
to x̂ ∈ IRn+, we have that ‖x̂ − xk j ‖ → 0, and consequently ‖x̂ − xk‖ → 0, which implies
that the limit point is unique and xk → x̂ .
(a) From the iterative formula (6) and Lemma 2.3 (d), we have

0 ∈ ∂̂
(

f (x)+ λkdφ(x, xk)
)
(xk+1).

Therefore, there exists gk+1 ∈ ∂̂ f (xk+1) such that

λk∇1dφ(x
k+1, xk) = −gk+1,

i.e., for each i = 1, 2, . . . , n,

gk+1
i = −µλk xk

i ϕ
′(xk+1

i /xk
i )− νλk(x

k+1
i − xk

i ). (33)

Since ϕ ∈ �2, we have from (9) that for each i = 1, 2, . . . , n,

−µλk xk
i ϕ

′
(

xk+1
i

xk
i

)

≥ −µλkϕ
′′(1)xk

i

(
xk+1

i

xk
i

− 1

)

≥ −µλkϕ
′′(1)(xk+1

i − xk
i ).

Combining the last two inequalities then yields that

gk+1
i ≥ λk(µϕ

′′(1)+ ν)(xk
i − xk+1

i ) = 2θλk(x
k
i − xk+1

i ), i = 1, 2, . . . , n, (34)
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which, together with the facts that {xk}k∈N is convergent and λk is bounded, implies the first
part of conclusions. In addition, from ϕ ∈ �2, we have

−µλk xk
i ϕ

′
(

xk+1
i

xk
i

)

≤ µλkϕ
′′(1)(xk

i − xk+1
i )

xk
i

xk+1
i

, i = 1, 2, . . . , n,

which, together with (33), implies that

gk+1
i ≤ µλkϕ

′′(1)(xk
i − xk+1

i )
xk

i

xk+1
i

+ νλk(x
k
i − xk+1

i ), i = 1, 2, . . . , n. (35)

Combining the inequalities (34) and (35) yields

2θλk xk+1
i (xk

i − xk+1
i ) ≤ gk+1

i xk+1
i ≤ (µλkϕ

′′(1)xk
i + νλk xk+1

i )(xk
i − xk+1

i ).

Considering that {xk}k∈N is convergent, we readily obtain the second part of conclusion from
the above inequality. Thus, the proof is completed.
(b) The proof is similar to that of Proposition 4.4 (b), and we here omit it. �

As immediate particular cases of the above propositions, we have the following results.

Corollary 4.1 Suppose that f is a continuously differentiable quasi-convex function on IRn

and assumptions (A1) and (A2) are satisfied. Let {xk}k∈N be the sequence generated by IPM
or RIPM. Then,

(a) if there exist λ and λ̄ such that 0 < λ < λk ≤ λ̄ for any k, then {xk}k∈N converges to a
stationary point of problem (5).

(b) If limk→+∞ λk = 0, then the sequence {xk}k∈N converges to a solution of problem (5).

Proof (a) From Propositions 4.4–4.5, the sequence {xk}k∈N is convergent and we denote
its limit by x̄ . Then, using Lemma 2.3 and (24) (or (32)) gives

(∇ f (x̄))i x̄i = lim
k→+∞(∇ f (xk))i xk

i = 0, i = 1, 2, . . . , n.

This implies that ∇ f (x̄)T (x − x̄) ≥ 0 for any x ≥ 0. Therefore, x̄ is a stationary point of
problem (5) by Definition 2.4 (b).
(b) The proof is similar to that of Proposition 4.4 (b) and Proposition 4.5 (b). �

Particularly, for the limit of the sequence {xk}k∈N generated by RIPM, we have the similar
localization result to that of [17]. To see this, let πU : IRn → IRn such that

πU (x
0) = argmin{‖x − x0‖ : x ∈ U }

and define

ρ(x0,U ) := ‖πU (x
0)− x0‖.

Note that πU (x0) exists since U is a nonempty closed convex set under assumption (A1).

Proposition 4.6 Suppose that assumptions (A1) and (A2) are satisfied. Let {λk}k∈N be an
arbitrary sequence of positive numbers and {xk}k∈N be the sequence generated by RIPM
with the limit x̄ . Then,

‖x0 − x̄‖ ≤ 2ρ(x0,U ).
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Proof Setting x = πU (x0) in (23), we obtain ‖πU (x0) − xk‖ ≤ ‖πU (x0) − x0‖. Taking
the limit k → +∞ to this inequality gives

‖πU (x
0)− x̄‖ ≤ ‖πU (x

0)− x0‖.
By this, we then have

‖x0 − x̄‖2 ≤ (‖x0 − πU (x
0)‖ + ‖πU (x

0)− x̄‖)2

≤ 2
(‖x0 − πU (x

0)‖2 + ‖πU (x
0)− x̄‖2)

≤ 2
(‖x0 − πU (x

0)‖2 + ‖πU (x
0)− x0‖2)

≤ 4‖x0 − πU (x
0)‖2 = 4ρ2(x0,U ).

Thus, the proof is completed. �

5 Numerical experiments

In this section, we report our preliminary numerical experience for IPM and RIPM by solving
a class of continuously differentiable quasi-convex optimization problems. We will use the
following approximate version of the iterative scheme (6).

AIPM (or ARIPM)
Given τ1, τ2 > 0, and select a starting point x0 ∈ IRn++. Set k := 1.
For k = 1, 2, · · · , until |∇ f (xk)T xk | ≤ τ1 do

1. Use a unconstrained minimization method to solve approximately the problem

min
x∈IRn

{
f (x)+ λkdφ(x, xk)

}
(36)

and obtain an xk+1 such that ‖∇ f (xk+1)+ λk∇1dφ(xk+1, xk)‖ ≤ τ2.
2. Let k := k + 1, and then go back to Step 1.

End
Unless otherwise stated, dφ(·, ·) in AIPM and ARIPM is defined as in (4) with

φ(t) = µϕ2(t)+ ν

2
(t − 1)2 = µ(− ln t + t − 1)+ ν

2
(t − 1)2,

where µ = 1 and ν = 0 are used for AIPM whereas µ = 1 and ν = 2 for ARIPM.
We generate a continuously differentiable quasi-convex function f (x) by compounding

a quadratic convex function g(x) = 1
2 xT Mx with a continuously differentiable increasing

function h : I → IR, i.e., f (x) = h(g(x)), where I ⊇ IR+ and M ∈ IRn×n is a given
symmetric positive semidefinite matrix. It is not hard to verify that the problem (5) with
such f (x) as the objective has a global optimal solution x∗ = 0. In our experiments, the
matrix M was obtained by setting M = N N T , where N is a square matrix whose nonzero
elements are chosen randomly from the interval [−1, 1]. In this procedure, the number of
nonzero elements of N is determined so that the nonzero density of M can be approximately
estimated. The function h is given as below.

Experiment A Take h(t) = − 1

1 + t
(t �= −1) and generate five matrices M of dimension

n = 100 with approximate nonzero density 0.1, 1 and 50%, respectively. Then, we solve
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each quasi-convex programming problem of form (5) with f (x) = − 1

1 + (xT Mx)/2
by

using AIPM and ARIPM.
Experiment B Set h(t) = ln(1+ t) (t > −1) and use those matrices M generated in Exper-
iment A to give the function f (x) = ln[1 + (xT Mx)/2]. Then, we solve each quasi-convex
optimization problem of form (5) with AIPM and ARIPM.
Experiment C Take h(t) = arctan(t)+ t + 2 and use those matrices M generated in Exper-
iment A to yield the function f (x) = arctan[(xT Mx)/2] + (xT Mx)/2 + 2. Then, we solve
each quasi-convex programming problem with AIPM and ARIPM.
Experiment D Take h(t) = t − cos(t) and use those matrices M in Experiment A to give
the corresponding f (x) = (xT Mx)/2−cos[(xT Mx)/2]. Then, we solve each quasi-convex
optimization problem with AIPM and ARIPM.

We implemented AIPM and ARIPM with our code in MATLAB 6.5. All numerical exper-
iments were done at a PC with 2.8 GHz CPU and 512 MB memory. We chose a BFGS algo-
rithm with Armijo line search to solve the subproblem (36). To improve numerical behavior,
we replaced the standard line search by a nonmonotone line search [9] to seek a suitable
steplength, i.e., we computed the smallest non-negative integer l such that

Fk(x
k + βldk) ≤ Wk − σβl Fk(x

k),

where Fk(x) = f (x)+ λkdφ(x, xk) and Wk given by

Wk = max
j=k−mk ,...,k

Fk(x
j )

and where, for a given non-negative integer m̂ and s, we set

mk =
{

0, if k ≤ s,
min

{
mk−1 + 1, m̂

}
, otherwise.

Throughout the experiments, we used the following parameters for the line search

β = 0.2, σ = 1.0e − 4, m̂ = 5 and s = 5.

The parameters involved in AIPM and ARIPM, unless otherwise stated, are chosen as

x0 = ω, τ1 = τ2 = 1.0e − 5, λk = 1.0e − 4 for all k,

where ω is chosen randomly from the interval in [1, 2]. Of course, we should point out that
these parameters are not best for all the above experiments.

Numerical results for Experiments A–D are summarized in Tables 1–4. In these tables,
Obj. denotes the value of f (x) at the final iteration, Nf denotes the total number of function
evaluations for the objective function Fk(x) of subproblem (36) for solving each quasi-con-
vex programming problem, Den denotes the approximate nonzero density of M , and Time
represents the CPU time for solving each quasi-convex problem.

From Tables 1–4, we see that AIPM and ARIPM can find a favorable approximate optimal
solution for all quasi-convex programming problems in Experiments A–C from the given
starting point x0 = ω. However, for the problems in Experiment D where the matrix M has
1 or 50% nonzero density, we adopt the starting point x0 = 0.1ω rather than x0 = ω so as
to obtain favorable results. From these tables, we also observe that, both AIPM and ARIPM
will need more function evaluations when the nonzero density of the matrix M becomes
higher. In particular, for those problems where M has 50% nonzero density, we must make
preprocessing for M by use of scaling technique to get the favorable solution. In addition,
we also note that the choice of λk in AIPM and ARIPM has an important influence on
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Table 1 Numerical results for Experiment A

No. Den% IPM RIPM

Obj. Nf Time Obj. Nf Time

1 0.1 −9.999967e − 1 386 0.26 −9.999962e − 1 365 0.25
2 0.1 −9.999954e − 1 340 0.17 −9.999952e − 1 319 0.15
3 0.1 −9.999999e − 1 477 0.28 −9.999999e − 1 500 0.28
4 0.1 −9.999952e − 1 265 0.14 −9.999964e − 1 260 0.14
5 0.1 −9.999993e − 1 520 0.30 −9.999983e − 1 517 0.30
6 1 −9.999951e − 1 20,617 8.01 −9.999962e − 1 1,708 1.00
7 1 −9.999950e − 1 25,531 10.40 −9.999952e − 1 4,826 2.46
8 1 −9.999956e − 1 25,397 11.60 −9.999952e − 1 2,085 0.98
9 1 −9.999959e − 1 17,891 8.46 −9.999959e − 1 1,466 0.96
10 1 −9.999701e − 1 22,905 2.07 −9.999721e − 1 1,519 0.98
11 50 −9.999950e − 1 20,583 13.12 −9.999951e − 1 12,062 7.98
12 50 −9.999953e − 1 6,531 4.21 −9.999950e − 1 15,227 8.73
13 50 −9.999951e − 1 10,074 8.60 −9.999951e − 1 5,974 4.56
14 50 −9.999950e − 1 5,246 3.71 −9.999954e − 1 6,481 6.03
15 50 −9.999950e − 1 11,120 7.86 −9.999951e − 1 6,124 4.14

Table 2 Numerical results for Experiment B

No. Den% IPM RIPM

Obj. Nf Time Obj. Nf Time

1 0.1 4.013010e − 6 275 0.18 3.195084e − 6 276 0.18
2 0.1 4.608092e − 6 303 0.18 4.800069e − 6 265 0.18
3 0.1 2.510805e − 7 303 0.18 3.746151e − 6 298 0.17
4 0.1 2.842520e − 6 430 0.20 3.134997e − 6 424 0.21
5 0.1 5.042468e − 7 303 0.17 4.966536e − 6 312 0.20
6 1 3.492764e − 6 1,849 1.15 4.698351e − 6 1,771 1.15
7 1 5.042944e − 6 4,663 2.45 4.863436e − 6 4,382 2.23
8 1 3.943078e − 6 1,583 1.04 4.196487e − 6 1,397 0.90
9 1 3.449366e − 6 1,954 1.31 4.379457e − 6 1,784 1.20
10 1 3.329399e − 5 5,732 2.92 2.281747e − 5 12,485 5.21
11 50 4.885931e − 6 8,759 7.59 4.775461e − 6 82,193 77.07
12 50 4.989218e − 6 17,969 16.20 4.906823e − 6 18,086 13.54
13 50 4.988505e − 6 9,215 8.65 4.827482e − 6 8,817 8.75
14 50 4.991178e − 6 8,402 8.58 4.753145e − 6 7,828 7.53
15 50 4.923310e − 6 9,842 9.25 4.982674e − 6 9,431 10.21

numerical results. In our future research works, we will make further study for the dynamic
choice of λk .

6 Conclusions

In this paper, we investigated two classes of entropy-like proximal algorithms based on a
second-order homogeneous distance function, namely IPM and RIPM, for the quasi-convex
optimization problem (5). The convergence properties of the algorithms were established
under some mild assumptions, and particularly, two important convergence results were
obtained by imposing certain conditions on the proximal parameters λk ; see Propositions
4.4–4.5 (a) and (b). Numerical results were reported for those problems where f (x) is a
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Table 3 Numerical results for Experiment C

No. Den% IPM RIPM

Obj. Nf Time Obj. Nf Time

1 0.1 2.000004e − 0 165 0.14 2.000004e − 0 169 0.14
2 0.1 2.000004e − 0 141 0.09 2.000005e − 0 140 0.07
3 0.1 2.000004e − 0 240 0.17 2.000001e − 0 247 0.15
4 0.1 2.000004e − 0 157 0.09 2.000002e − 0 157 0.09
5 0.1 2.000000e − 0 234 1.15 2.000000e − 0 235 1.14
6 1 2.000004e − 0 1,426 0.92 2.000005e − 0 2,038 1.10
7 1 2.000005e − 0 1,502 0.89 2.000005e − 0 3,956 2.06
8 1 2.000005e − 0 1,509 1.12 2.000005e − 0 1,335 0.89
9 1 2.000005e − 0 1,517 1.01 2.000005e − 0 1,572 1.00
10 1 2.000034e − 0 69,734 19.32 2.000045e − 0 4,957 2.59
11 50 2.000005e − 0 3,450 3.43 2.000005e − 0 3,348 3.51
12 50 2.000005e − 0 3,759 3.62 2.000005e − 0 3,689 4.84
13 50 2.000005e − 0 3,924 3.85 2.000005e − 0 4,003 4.01
14 50 2.000005e − 0 3,530 3.96 2.000005e − 0 3,708 3.71
15 50 2.000005e − 0 3,963 3.87 2.000005e − 0 3,940 5.37

Table 4 Numerical results for Experiment D

No. Den% IPM RIPM

Obj. Nf Time Obj. Nf Time

1 0.1 9.999984e − 1 557 0.36 9.999989e − 1 559 0.37
2 0.1 9.999959e − 1 201 0.15 9.999961e − 1 449 0.28
3 0.1 9.999979e − 1 596 0.32 9.999996e − 1 587 0.31
4 0.1 9.999954e − 1 416 0.26 9.999985e − 1 409 0.25
5 0.1 9.999848e − 1 5,251 1.46 9.999942e − 1 1,462 0.67
6 1 9.999954e − 1 1,401 1.06 9.999951e − 1 1,302 0.98
7 1 9.999950e − 1 1,596 1.18 9.999951e − 1 4,444 2.65
8 1 9.999953e − 1 1,121 0.84 9.999956e − 1 1,282 0.86
9 1 9.999968e − 1 1,336 0.96 9.999950e − 1 1,474 1.00
10 1 9.999976e − 1 1,521 1.11 9.999958e − 1 1,600 1.04
11 50 9.999952e − 1 35,864 24.89∗ 9.999951e − 1 4,875 5.05∗
12 50 9.999959e − 1 4,853 6.98 9.999956e − 1 4,146 3.95
13 50 9.999951e − 1 4,189 4.14 9.999951e − 1 4,661 4.96
14 50 9.999952e − 1 14,078 18.62 9.999957e − 1 24,907 19.89
15 50 9.999961e − 1 3,577 3.90 9.999974e − 1 4,155 4.12
15 50 9.995090e − 1 2,128 1.82 9.999950e − 1 35,463 33.26

For the problems where the matrix M has 1 or 50% nonzero density, the starting point x0 = 0.1ω was used in
the experiments. The notation “∗” means that the results were obtained by using λk = 1.0e − 3 and 1.0e − 5
for IPM and RIPM, respectively

composition of a quadratic convex function and a continuously differentiable increasing
function, which indicate that IPM and RIPM are effective for this class of quasi-convex pro-
gramming problems, and they are very promising for finding the global optimal solution. All
convergence results of IPM and RIPM in this paper can be easily extended to the following
more general quasi-convex problem

min f (x)
s.t. Ax + b ≥ 0,

123



574 J Glob Optim (2007) 39:555–575

where the matrix A ∈ IRm×n has a full column rank and b ∈ IRm .
As pointed out by a referee, the sets �1 and �2 are two convex cones. This implies that

for any ϕ1, ϕ2 ∈ �2 and any α, β > 0, we have

αϕ1 + βϕ2 ∈ �2.

For example, from the first two examples given in Sect. 3, we have

ψ(t) = ϕ1(t)+ ϕ2(t) = (t ln t − t + 1)+ (− ln t + t − 1) = (t − 1) ln t ∈ �2.

Similarly, there are a lot of concrete functions belong to �2, which can be used to design
proximal algorithms for the quasi-convex optimization problem. Thus, an interesting prob-
lem will arise: what kind of functions like this have better numerical performance. In our
future research work, we will make study for the comparison of these kernel functions.
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